
The Game of Cops and Robbers and
Computability Theory

Natalie DeVos

B.S. Pure Mathematics, Central Michigan University, Mt. Pleasant, Michigan, 2020

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

at the

University of Connecticut

2023

Copyright by

Natalie DeVos

2023

ii

APPROVAL PAGE

Master of Science Thesis

The Game of Cops and Robbers and
Computability Theory

Presented by

Natalie DeVos, B.S.

Major Advisor
Reed Solomon

Associate Advisor
Damir Dzhafarov

Associate Advisor
Jeremy Teitelbaum

University of Connecticut

2023

iii

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Reed Solomon, for all of his help and

guidance. Reed was always available when I had questions and always made me feel

capable and supported. I couldn’t have completed this project without his dedication,

for which I am incredibly grateful.

I would also like to thank Damir Dzhafavrov and Jeremy Teitelbaum for serving

on my committee and for taking the time to attend my defense.

Finally, I am thankful for my family and friends and their support and encourag-

ment throughout my time at UConn. In particular, I would like to thank my mom

for all of our conversations filled with love and support and for helping me realize and

pursue the path I am on now.

iv

Contents

Ch. 1. Introduction 1

1.1 The Game of Cops and Robbers on Graphs 1

1.2 The 0-Visibility Variant . 3

1.3 Computability Theory . 6

Ch. 2. The 0-Visibility Cops and Robbers Game on K3 8

2.1 Cop and Robber Sequences on K3 . 8

2.2 K3 as a 0-Robber Win Graph . 9

2.3 Extensions of Cop and Robber Sequences 11

Ch. 3. Finite Repeats in a Cop Sequence 13

3.1 Zero Repeats . 14

3.2 n Many Repeats . 20

Ch. 4. Infinite Repeats in a Cop Sequence 27

Bibliography 39

v

Chapter 1

Introduction

1.1 The Game of Cops and Robbers on Graphs

The idea behind the game of cops and robbers, in general, is that a cop is chasing a

robber who is trying to evade the cop’s capture. We can play this game on graphs

by allowing the cop and robber to occupy vertices and move along edges. The game

starts with the cop and robber first selecting their initial positions. The game is then

played in rounds where, on each round, the cop makes the first move followed by the

robber. The goal of the cop is to catch the robber, while the goal of the robber is to

avoid being caught by the cop.

We say a cop captures a robber if they both occupy a single vertex at any point

in the game. On each turn, the cop or robber must traverse an edge to a neighboring

vertex or decide to stay in place. A winning strategy for a cop is a rule telling the cop

how to move in every situation of the game that, if followed by the cop, guarantees

the capture of the robber. A winning strategy for a robber is a rule telling the robber

1

2

how to move in every situation of the game that, if followed by the robber, guarantees

the avoidance of the cop’s capture. We say that a graph with a winning strategy for

the cop is cop-win while a graph with a winning strategy for the robber is robber-win.

Every finite graph is either cop-win or robber-win; that is, there are no draws in the

game.

Example 1. A path on four vertices is an example of a graph that is cop-win.

v1 v2 v3 v4

Without loss of generality, suppose the robber starts on a vertex to the right of the

cop. Then the cop can move to the rightmost neighboring vertex on each turn. The

robber can do the same in an attempt to avoid capture, but the cop will eventually

trap and capture the robber at the end of the path.

Example 2. A cycle on four vertices is an example of a graph that is robber-win.

v1 v2

v3 v4

Suppose the cop starts on vertex v1. Then the robber must start on vertex v4,

otherwise the cop will be able to capture the robber on its next move. If the cop

moves to v2, the robber can move to v3. If the cop moves to v3, the robber can move

to v2. In general, the robber will always be able to move to a vertex that is not

adjacent to the vertex the cop is currently on and, as a result, avoid capture.

3

1.2 The 0-Visibility Variant

There are many variations of the game of cops and robbers on graphs. One such

variation is called 0-visibility Cops and Robbers. The key difference in this game is

that the cops and robbers have different knowledge about the other’s whereabouts.

We assume the cop does not know which vertex the robber is on, unless it is occupying

the same vertex as the robber, in which case the game is over and the cop has won.

The robber, on the other hand, knows which vertex the cop is on as it plays. This

way the robber can try to evade the cop’s moves without losing by chance.

We will now discuss some definitions related to the 0-visibility variant on a graph

G. A cop sequence of moves is a function c : N → G such that, for all n, there is

an edge from c(n) to c(n + 1). Similarly, a robber sequence of moves is a function

r : N → G such that there is an edge from r(n) to r(n + 1), for all n. For a cop

sequence c and a robber sequence r, we say that c beats r if and only if

(∃n)(c(n) = r(n) ∨ c(n+ 1) = r(n)),

and we say that r beats c if and only if

(∀n)(c(n) ̸= r(n) ∧ c(n+ 1) ̸= r(n)).

Then a graph is 0-cop win if and only if there exists a cop sequence c such that for

every robber sequence r, c beats r. A graph is 0-robber win if and only if for every

cop sequence c, there exists a robber strategy r such that r beats c. Note that when

showing a graph is 0-robber win, the robber can play as though it knows all of the

cop’s moves. That is, when proving G is 0-robber win, we start with an arbitrary cop

4

sequence c and then build a robber sequence r in such a way that it beats c. Thus,

the robber sequence r can use all the information about the arbitrary cop sequence c

in order to beat it.

Example 3. The following graph is 0-cop win.

v1 v2 v3 v4 vn

v0

· · ·

Consider the cop sequence v0, v1, v0, v2, v0, v3, v0, v4, If the robber starts on v0 or

v1, then the cop will capture the robber by the end of the first round. Suppose, then,

that the robber starts on vi for 2 ≤ i ≤ n. The robber has only two options: move to

v0 or stay in place. If the robber moves to v0, then it is either immediately captured

by the cop who is currently on v0 or it will be captured after the next round when

the cop moves to v0. Thus, the robber has no choice but to stay in place. However,

the cop will eventually visit each vi in its sequence, so the robber will be captured

at the vertex it is forced to remain at. Therefore, this cop sequence beats all robber

sequences.

Note that this graph would still be 0-cop win if it were infinite. In particular,

suppose there were infinitely many vertices with an edge connecting itself and v0.

Then the cop sequence would be an infinite sequence, but the robber still would be

stuck on some vertex vi that is a part of the cop sequence.

5

Example 4. The following graph is 0-robber win.

v1 v2

v3

v4

v5

v6

v7

A robber can use the center vertex v1 to switch between the three branches of the

graph and escape to a branch the cop is not on or about to move to. For exam-

ple, consider the cop sequence v5, v4, v1, v2, v3, v2, v1, v6, v7. The robber can start on

v6 and remain there for a while, but will need to move eventually to avoid being

caught. Once the cop moves to v2, the robber can move to v1 and then v4 to avoid

the cop who is about to move to v6. Thus, a winning robber sequence would be

v6, v6, v6, v1, v4, v4, v4, v4, v4.

In general, if the cop moves to an outside vertex (i.e. v5, v3, or v7), then the

robber has an opportunity to move to v1 and switch to a new branch of the graph to

avoid the cop. Similarly, if the cop stays in place on a middle vertex (i.e. v2, v4, or

v6), then this also gives the robber an opportunity to switch branches via v1.

Consider another cop sequence v5, v4, v1, v2, v1, v6, v7. Unlike the previous exam-

ple, the robber does not have time to switch to a new branch via v1 without being

caught. However, the cop never reaches the end of one branch, namely the vertex v3.

Therefore, the robber could remain on that vertex the entire sequence and win.

6

1.3 Computability Theory

We will be exploring the 0-visibility game of cops and robbers using tools from com-

putability theory. Hence, we will briefly discuss some ideas and tools that will be

utilized in the later chapters.

Consider a program P which consists of a finite lists of instructions. Suppose we

run the program P on an input m. Then our program can either halt and output an

answer or it never halts. In particular, if the program P halts on input m, we say

that P converges on input m and we write P (m)↓. Alternatively, if the program P

never halts, we say that P diverges on input m and write P (m)↑.

A partial function p(x) : N → N is a function whose domain is contained (possibly

strictly) in N. A partial function is called total if its domain is all of N. We want to

consider partial functions that can be computed by a program. That is, consider a

list of partial computable functions Φ0,Φ1,Φ2, In general, we say that Φe is the

partial function computed by the program coded by the index e. However, the specific

programming language and the coding method doesn’t matter here, so we can ignore

the choices being made in the background and describe the algorithms informally.

(One such way to informally describe an algorithm is using flowcharts, which we will

see later in Chapter 3). Then, we can use Φe to define a computable function. In

particular, we say that a total function f is computable if and only if f = Φe for some

e. Moreover, to make a total function not be computable, we need that f ̸= Φe for

each e. This can happen in two ways: for each e, either (1) Φe(n)↓ ̸= f(n) for some

n or (2) Φe(n)↑ for some n.

In addition to the programming language, we can add extra instructions using

oracles. Given oracle B, we write ΦB
e for the partial function with fixed oracle B.

7

Then we can use our program to ask what the value of the oracle is on a given input.

For example, if our oracle B is a set and we ask the oracle about the input n, then we

get a branch of two possible answers: either n ∈ B or n /∈ B. Oracles can also be a

three-valued function c : N → {0, 1, 2} which we will see in Chapter 2. For instance,

given a three-valued function c as an oracle, we can ask c for the value of c(n). In this

case, we would get a branch of three possible cases: c(n) = 0, c(n) = 1, or c(n) = 2.

A key idea with oracles is that if ΦB
e (n)↓, then we know that the computation only

asks finitely many questions. This means we can find some initial segment β ⊆ B

such that Φβ
e (n)↓. Moreover, if Φβ

e (n)↓, then for any X ⊇ β, ΦX
e (n)↓ = Φβ

e (n)↓. We

will see this idea used later with our cop and robber sequences.

In general, even if a function is not computable, we can still measure its com-

putable power by comparing it to another function (which may or may not itself be

computable). First, we say that A is computable if and only if the characteristic

function on A, denoted χA, is equal to Φe for some e. Then A is computable from B,

denoted A ≤T B, if there is some e such that A = ΦB
e . If both A ≤T B and B ≤T A,

then we denote this as A ≡T B. We will use this notion of relative computability to

explore the relationship between computation and the game of 0-visibility cops and

robbers on a particular graph.

Chapter 2

The 0-Visibility Cops and Robbers
Game on K3

2.1 Cop and Robber Sequences on K3

We now consider the 0-visibility cops and robbers game on the complete graph of

three vertices, K3. We will label and refer to the vertices of K3 as 0, 1, and 2.

1

0

2

The graph K3

A cop sequence of moves on K3 is a function c : N → {0, 1, 2} and a robber

sequence of moves on K3 is a function r : N → {0, 1, 2}. Note that this satisfies the

original definition of a cop and robber sequence on a graph G. In particular, since

8

9

K3 is a complete graph, there is an edge between any two vertices. Hence, c(n) and

c(n+ 1) share an edge and r(n) and r(n+ 1) share an edge, for all n.

Example 5. A cop or robber sequence on K3 can be represented by a sequence of

0s, 1s, and 2s, denoting the vertices the cop or robber will move to on each turn. An

example of a cop sequence on K3 is

c : 0 1 2 2 2 1 1.

Here the cop starts on vertex 0, moves to vertex 1 on its next turn, then moves to

vertex 2 and stays there for three rounds before moving back to vertex 1. An example

of a robber sequence on K3 is

r : 2 2 0 0 0 0 0

where robber stays on vertex 2 for the first two rounds, then moves to and remains

on vertex 0 for the remainder of the game.

2.2 K3 as a 0-Robber Win Graph

In the normal game of cops and robbers, the graph K3 is cop-win since every vertex

has an edge to the two remaining vertices. The cop can capture the robber after

one round by moving to the vertex the robber chose to start on. However, in the

0-visibility variation, the graph is 0-robber win. Recall that when building a robber

sequence r that beats a cop sequence c, we can use the information of c to build an r

that beats c. That is, the robber can now anticipate and avoid the cop’s current and

next moves in order to escape the cop’s capture.

10

Theorem 2.2.1. For every cop sequence c, there exists a robber sequence r such that

r beats c.

Proof. Suppose we’re given an arbitrary cop sequence, c. Then we want to build a

robber sequence, r, so that the robber is never captured by the cop. Recall that in

each round, the cop moves first. Thus, in order for the robber to avoid the cop’s

capture, the robber must avoid the vertices the cop is on and will move to next. In

particular, for each stage n of the game, the robber needs to avoid the vertex the cop

is on at the end of stage n as well as the vertex the cop will move to in stage n + 1.

This will either be one or two vertices depending on whether the cop stays in place

or not. In either case, there will always be at least one vertex that the robber can

move to that will guarantee its non-capture. That is, for every cop sequence c, there

is a robber sequence r such that c(n) ̸= r(n) and c(n+ 1) ̸= r(n) for all n.

Later we will need the corresponding fact that every robber sequence beats some

cop sequence.

Theorem 2.2.2. For every robber sequence r, there exists a cop sequence c such that

c loses to r.

Proof. Suppose we’re given an arbitrary robber sequence, r. Then we want to build

a cop sequence, c, so that the cop never captures the robber. Since the cop moves

first each round, it will need to avoid the vertices the robber had previously moved

to and is currently on. In particular, for each stage n of the game, the cop must

avoid the vertex the robber was on at the end of stage n − 1 as well as the vertex

the robber moved to in stage n. This will either be one or two vertices depending on

whether the robber has stayed in place or not. In either case, there is at least one

11

vertex that the cop can move to that will guarantee it doesn’t capture the robber.

Thus, for every robber sequence r, there is a cop sequence c such that r(n−1) ̸= c(n)

and r(n) ̸= c(n) for all n. That is, for all r, there exists a c such that c loses to r.

2.3 Extensions of Cop and Robber Sequences

So far we have seen that given a cop sequence c, we can build the entire robber

sequence r (or given a robber sequence r, we can build the entire cop sequence c) so

that r beats c. We can also consider the case where we are given both a cop and

robber sequence with a number of turns already established so that the robber is

beating the cop so far. In this case, we can determine whether the cop and robber

sequences can be extended so that the robber continues to beat the cop (or the cop

continues to lose to the robber).

Definition 1. Let σ and τ be finite strings from {0, 1, 2}. We say σ is an initial

segment of τ (or τ is an extension of σ) if |σ| ≤ |τ | and σ(i) = τ(i) for all i < |σ|.

We denote this as σ ⊆ τ .

Lemma 1. Let r be a finite robber sequence and let c be a finite cop sequence. Suppose

|c| = |r|+1 and r beats c. Then for any extension of c, say c′, there exists an extension

of r, say r′, such that |c′| = |r′|+ 1 and r′ beats c′.

Lemma 2. Let r be a finite robber sequence and let c be a finite cop sequence. Suppose

|c| = |r|+1 and r beats c. Then for any extension of r, say r′, there exists an extension

of c, say c′, such that |c′| = |r′|+ 1 and c′ loses to r′.

The idea of these proofs is very similar to those of Theorem 2.2.1 and Theorem

2.2.2. Since we are setting |c| = |r| + 1, we can still make sure that c(n) ̸= r(n)

12

and c(n + 1) ̸= r(n) for all n (in the case of Lemma 1) or that r(n − 1) ̸= c(n) and

r(n) ̸= c(n) for all n (in the case of Lemma 2). The only difference here is that we

have some starting values where r is beating c. We will see these Lemmas again in

Chapter 4 when we discuss cop sequences with infinitely many repeated values.

Chapter 3

Finite Repeats in a Cop Sequence

We now consider a case of the 0-visibility game of cops and robbers on K3 where the

cop stays in place finitely often. That is, assume a cop sequence c : N → {0, 1, 2} has

a finite amount of places where a value is repeated so that the set {i : c(i) = c(i+1)}

is finite. From here we wish to explore two main ideas:

Q1. Suppose we fix a cop sequence c. Then how many robber sequences r exist such

that r beats c? And can the cop sequence compute such a robber sequence?

Q2. Suppose we fix a cop sequence c and a robber sequence r such that r beats c.

Then is it possible for the robber sequence to compute the cop sequence? In

other words, can we reconstruct c from r?

We will investigate these questions in two cases: first, if the cop sequence has zero

repeats and second, if the cop sequence has n many repeats.

13

14

3.1 Zero Repeats

In this section, we will assume that all cop sequences c have zero repeated values.

That is, every cop sequence considered will move to a new vertex at every stage.

Thus, we are looking at the case where the set {i : c(i) = c(i+ 1)} is empty.

Example 6. Consider the following cop sequence c with zero repeats.

c : 0 1 2 1 2 0 1

In order to find a robber sequence r that beats c, we need the robber to avoid the cop

at every move. We know that the cop starts on 0, so the robber cannot also start on

0 otherwise the game would be over. Let’s say the robber starts on 1 instead. But

on the next turn the cop also moves to vertex 1, thus ending the game. Therefore,

the robber must start on vertex 2. In general, because the cop moves first each turn,

the robber needs to avoid the vertex the cop is currently on and the vertex the cop

is about to move to. Since the cop always moves to a new vertex, these two values

are distinct, leaving only one option for the robber. In this case, the robber sequence

that beats the cop sequence is:

r : 2 0 0 0 1 2.

Lemma 3. If |{i : c(i) = c(i + 1)}| = 0 for a cop sequence c, then there exists a

unique robber sequence r such that r beats c.

Proof. We know that r(k) cannot be equal to c(k) or c(k + 1) for all k in order to

avoid capture. But c(k) and c(k + 1) must be distinct values since the cop sequence

has zero repeats. Therefore, r(k) is uniquely determined for each k.

Lemma 4. Fix a cop sequence c with zero repeats. Then c computes a robber sequence

r that beats c.

15

Proof. Suppose we’re given a cop sequence c with zero repeats. Then we can deter-

mine a robber sequence r that beats c using the algorithm found in Figure 3.1.1.

Figure 3.1.1: Algorithm for r(k) with zero repeats

Compute c(k) and c(k + 1)

Set r(k) to be the unique number
not equal to c(k) and c(k + 1)

Notice that we have now answered the questions in Q1 in the case where the cop

sequence has zero repeats. In particular, suppose we fix a cop sequence c. Then there

is only one robber sequence r such that r beats c. And it is true that c can compute

such an r. We will now explore the ideas in Q2. In particular, suppose we now start

with a robber sequence r and want to find a cop sequence c such that c loses to r.

Example 7. Let’s first look at a cop sequence c that consists of only two values with

zero repeats. For example, consider

c : 1 2 1 2 1 2 1 2.

Then using the algorithm in Figure 3.1.1, we can determine that the unique robber

sequence that beats the cop sequence is

r : 0 0 0 0 0 0 0.

Suppose now we start with this r and want to determine c. We know that the cop

can never move to 0 (otherwise it captures the robber) and that the cop moves to a

new vertex each turn (since there are zero repeats). Thus, we can deduce that the

cop must be moving back and forth between values 1 and 2. But which value did the

16

cop start on? Notice that this r also beats the cop sequence c : 2 1 2 1 2 1 2 1. Thus,

in order for r to compute c, it needs to also know the value of c(0).

Lemma 5. Fix a cop sequence c that consists of only two values and has zero repeats.

Fix a robber sequence r that beats c. Suppose we’re given the value of c(0). Then r

computes c.

Proof. We know that the fixed robber sequence r consists entirely of one value. We

also know, for the fixed cop sequence c, that c(k) ̸= c(k+1) for all k (since c has zero

repeats) and c(k) ̸= r(k) for all k (since r beats c). Thus, c must alternate between

the two values not equal to the value in r. Since we’re given c(0), we can determine

the exact cop sequence c that loses to r.

There is a similar trivial case when the cop sequence has at least one repeated

value. The cases where the cop only takes one or two values will be left to the reader

in the future. We will assume from now on that all cop sequences will consist of three

values.

Example 8. We now consider an example where the cop sequence consists of three

values. Consider the following robber sequence.

r : 0 0 0 1

The only information we have about c(0) is that it can’t be equal to r(0) = 0.

However, the fact that the robber eventually moves to 1 means that we will actually

be able to determine c(0). We know that the cop always moves to a new vertex on

each turn, hence the cop must be traveling back and forth between vertices 1 and 2

while the robber stays put on vertex 0. However, we need to make sure that the cop

isn’t on vertex 1 when the robber moves there, i.e. we can set c(3) = 2. From here we

17

can work backwards to determine that c(2) = 1, c(1) = 2, and c(0) = 1. In general,

we can determine c(k) where k is the first position where the robber moves to a new

vertex, and then work backwards to determine the first k many positions of the cop

sequence.

Definition 2. Define kmin := min{k : r(k) ̸= r(0)}. In other words, let kmin be the

first place in a robber sequence in which the robber moves to a new vertex.

In the previous example, we saw why this least k value is important. In particular,

for the robber sequence r : 0 0 0 1, we have that kmin = 3.

Example 9. Suppose we start with a robber sequence r : 0 0 0 1 2 2 and assume

that we’ve found the first four values of the cop sequence c as explained in Example

8. That is, we so far have

c : 1 2 1 2 ? ?.

In order to determine c(4) notice that, because the cop moves first each turn, the

value of c(4) cannot be equal to r(4), nor can it be equal to r(3). The robber will

still be on r(3) by the time the cop moves to c(4), thus there are two robber values

the cop must avoid. Thus, c(4) ̸= r(4) = 2 and c(4) ̸= r(3) = 1. And so c(4) = 0. If

we next want to find c(5), notice that r(5) = r(4) = 2. Thus we know that c(5) can

either be 0 or 1. However, we also know that the cop moves to a new vertex on each

move, so we must have that c(5) ̸= c(4) which we determined to be 0. Thus, c(5)

must be 1. The cop sequence c that beats the robber sequence r, then, is:

c : 1 2 1 2 0 1.

Lemma 6. Fix a cop sequence c that consists of three values and has zero repeats.

Fix a robber sequence r that beats c. Then r computes c.

18

Proof. Suppose we’re given a cop sequence c with zero repeats and a robber sequence

r that beats c. Then we can determine c in three cases. First, compute c(l) when

l = kmin using the algorithm in Figure 3.1.2. Second, use c(l) to compute c(l− 1) for

l ≤ kmin using the algorithm in Figure 3.1.3. And third, use c(l) to compute c(l + 1)

for l ≥ kmin using the algorithm in Figure 3.1.4.

For the algorithm in Figure 3.1.2, notice that r(kmin − 1) is equal to r(0) since

kmin is the first position where r changes value. Thus, r(kmin) ̸= r(kmin − 1), leaving

one unique value for the cop at position l = kmin to avoid capturing the robber.

Figure 3.1.2: Algorithm for c(l), l = kmin with zero repeats

Compute r(0)

Compute kmin = min{k : r(k) ̸= r(0)}

Compute r(l − 1) and r(l)

Set c(l) to be the unique number
not equal to r(l − 1) and r(l)

After determining c(kmin), we can use the algorithm in Figure 3.1.3 to work back-

wards to determine the values from c(kmin − 1) to c(0). Up to this point, then, we

will have determined the first kmin values of the cop sequence.

For the algorithm in Figure 3.1.4, note that that set {c(l), r(l), r(l+1)} will always

consist of two values. To see why first suppose that r(l) = r(l+1). Then c(l) must be

a value different from r(l) in order to avoid the robber. Hence r(l), r(l + 1) and c(l)

have two distinct values between them. Second, suppose r(l) ̸= r(l+1). In particular,

19

Figure 3.1.3: Algorithm for c(l − 1), l ≤ kmin with zero repeats

Compute c(l) and r(l − 1)

Set c(l − 1) to be the unique number
not equal to c(l) and r(l − 1)

let r(l) = x1 and r(l + 1) = x2. Then c(l + 1) must be the unique value not equal to

either r(l) or r(l + 1), say x3. Then c(l) can either be x2 or x3. However, since the

cop always moves to a new vertex, c(l) ̸= c(l + 1). Thus, c(l) = x2. Overall, we have

that r(l + 1) = c(l) = x2 and r(l) = x1, two distinct values.

Figure 3.1.4: Algorithm for c(l + 1), l ≥ kmin with zero repeats

Compute r(l) and r(l + 1)

Set c(l + 1) to be the unique number
not in the set {c(l), r(l), r(l + 1)}

Now we have answered the questions in Q2 in the case where the cop sequence

has zero repeats. In particular, suppose we fix a cop sequence c with zero repeats and

a robber sequence r such that r beats c. Then we can reconstruct c from r, meaning

the robber sequence can compute the cop sequence.

Theorem 3.1.1. If |{i : c(i) = c(i+1)}| = 0 for a cop sequence c, then for all r that

beat c, r ≡T c.

Proof. From Lemma 4, we can conclude that r ≤T c and from Lemmas 5 and 6 we

can conclude that c ≤T r.

20

3.2 n Many Repeats

In this section, we will assume that all cop sequences c have n many repeated values.

That is, every cop sequence considered will remain on the same vertex n > 0 many

times. Thus, we are looking at the case where {i : c(i) = c(i+1)} = {i1, i2, i3, . . . , in}.

Definition 3. A repeat block is a maximal sequence of two or more consecutive values

i, i+ 1, . . . , i+ k such that c(i) = c(i+ 1) = · · · = c(i+ k).

We’ll identify repeat blocks within a cop or robber sequence by underlining them.

For example, the following cop sequence has three repeat blocks.

c : 0 1 2 2 2 1 1 0 1 2 0 0 0 0 1 2

Note that a repeat block is dependent on the repeated values in a cop sequence,

hence values in c will be underlined if and only if they are repeated values. However,

in a robber sequence, the corresponding repeat values may not themselves repeat.

Example 10. Consider the cop sequence

c : 1 2 2 1 1

To determine a robber sequence r that beats c, we must have that r(k) ̸= c(k) and

r(k) ̸= c(k+1) for each k. That is, in order for the robber to not be captured by the

cop, it must avoid the vertex the cop is currently on and the vertex the cop will move

to next (since the cop moves first each turn). First, we have that r(0) ̸= c(0) = 1

and r(0) ̸= c(1) = 2. Thus, r(0) = 0. We next have that r(1) ̸= c(1) = 2 and

r(1) ̸= c(2) = 2. Because the cop stayed on the same vertex, the robber now has

some flexibility in its next move. In particular, we could have that r(1) = 0 or

r(1) = 1. Either choice would result in the robber avoiding the cop. Continuing on

we have that r(2) ̸= c(2) = 2 and r(2) ̸= c(3) = 1, hence r(2) = 0. For r(3), we

21

again face some flexibility since r(3) ̸= c(3) = 1 and r(3) ̸= c(4) = 1. Hence, r(3) can

either be 0 or 2, with either choice resulting in the robber avoiding capture. Thus,

with these two repeat blocks, we have a total of four robber sequences that beat the

cop sequence c. In particular, they are:

r : 0 0 0 0 r : 0 1 0 0 r : 0 0 0 2 r : 0 1 0 2

Lemma 7. If |{i : c(i) = c(i+1)}| = n for a cop sequence c, then there are 2n many

robber sequences r such that r beats c

Proof. When the cop moves to a new vertex, the robber position is determined. That

is, for each k if c(k) ̸= c(k+1), then r(k) must be the unique value not equal to c(k)

or c(k + 1). When the cop stays in place, however, the robber now has two options

of where to move. That is, the robber can stay in place or move to the unoccupied

vertex. Thus, for each k if c(k) = c(k + 1), then r(k) can be one of two values not

equal to c(k) = c(k+1). Furthermore, for every position where the cop stays in place,

there are two robber positions, and therefore sequences, that can beat the cop.

Lemma 8. Given a cop sequence c with n many repeats, we can compute a robber

sequence r that beats c.

Proof. Suppose we’re given a robber sequence c with n many repeats. Then we can

determine a robber sequence r that beats c using the algorithm found in Figure

3.2.1.

Notice that the algorithm in Figure 3.2.1 takes care of the flexibility that arises

when the cop sequence repeats a value. That is, when c(k) ̸= c(k + 1), there are two

options for r(k) and the algorithm simply choose the larger of the two. We could’ve

also had the algorithm choose the smaller of the two, or set r(k) = r(k−1) for k ≥ 1.

22

But for consistency, we will have the algorithm always select the larger of the two

possible robber sequence values.

Figure 3.2.1: Algorithm for r(k) with n many repeats

Compute c(k) and c(k + 1)

Is c(k) = c(k + 1)?

Set r(k) to be the
unique number not equal

to c(k) and c(k + 1)

Set r(k) to be the
larger of the two
numbers not equal
to c(k) = c(k + 1)

Yes No

We have thus far answered the questions in Q1 in the case where the cop sequence

has n many repeats. That is, suppose we fix a cop sequence c with n many values

that are repeated. Then there are 2n many robber sequences r such that r beats c.

And the cop sequence can compute such a robber sequence using the algorithm in

Figure 3.2.1.

Suppose now we’re given a robber sequence r that beats c and we want to recon-

struct the cop sequence c that lost to r. In order to do so, we need to know where

the cop sequence has repeated values. That is, our robber sequence must know the

position of the repeat blocks in the cop sequence we are trying to reconstruct.

We mark the position of the repeat blocks in the cop sequence by underlining the

corresponding positions in the robber sequence. For example, r : 0 0 1 2 0 indicates

that the original cop sequence c beaten by r had a repeated value in positions 2 and

3. That is, c(2) = c(3).

23

Example 11. Consider the following robber sequence with a repeat block.

r : 1 1 1 0

The only information we can gather about c(0) is that it cannot be equal to

r(0) = 1. For c(1), we know that it cannot be equal to r(0) or r(1), but these are

both equal to 1. Thus, is it beneficial to first look at the position where the robber

moves to a new vertex, in this case k = 3. Since r(2) = 1 and r(3) = 0, we know that

c(3) must be 2. We can now work backwards to determine the first 3 values of the cop

sequence. Notice that the repeat block will be very important here. In particular, we

know two values in a cop sequence are equal to each other if and only if they are in

the same repeat block. Thus, because k = 2 and k = 3 are not in the same repeat

block, we know that c(2) ̸= c(3) = 2. Additionally, we know that c(2) ̸= r(2) = 1 and

so c(2) must be 0. Then, since k = 1 and k = 2 are in the same repeat block, we can

immediately conclude that c(1) must be 0 as well. Finally, since k = 0 and k = 1 are

not in the same repeat block, c(0) ̸= c(1) = 0. And, since c(0) ̸= r(0) = 1, we have

that c(0) = 2. Therefore, the cop sequence that loses to the given robber sequence is

c : 2 0 0 2.

Recall that we defined kmin = min{k : r(k) ̸= r(0)} to be the first place in a

robber sequence where the robber moves to a new vertex. In the example above, we

had that kmin = 3 and were able to first determine c(kmin) then work backwards to

find the values for c(kmin − 1) down to c(0). We can next look at an example where

we have to determine c(kmin + 1) and beyond.

Example 12. Consider the following robber sequence.

r : 1 1 1 0 2 2

24

Assume we have determined the first four values of the cop sequence, as explained in

the previous example. That is, suppose we so far have the cop sequence

c : 2 0 0 2 ? ?

and want to determine c(4) and c(5). First, to find c(4), we know that c(4) ̸= r(4) = 2

and c(4) ̸= r(3) = 0. Thus, c(4) must be equal to 1. To find c(5), we must have that

c(5) is not equal to r(5) or r(4), both of which are equal to 2. Thus, c(5) could either

be 0 or 1. However, because we know the exact positions where the cop sequence

has repeated values, we can also look at the repeat blocks and the value of c(4). In

particular, since k = 4 and k = 5 are not in a repeat block, we know that c(4) ̸= c(5)

where c(4) was just determined to be 1. Therefore, c(5) = 0 and the cop sequence

that loses to the given robber sequence is

c : 2 0 0 2 1 0.

Lemma 9. Fix a cop sequence c that has n many repeats. Fix a robber sequence r

that beats c. Then r computes c.

Proof. Fix a cop sequence c with n many repeats. Suppose we start with a robber

sequence r knowing where the corresponding repeat values are in the cop sequence.

Then we can compute the cop sequence c from r such that c loses to r in three cases.

First, compute c(l) when l = kmin using the algorithm in Figure 3.2.2 (page 25).

Second, use c(l) to compute c(l − 1) for l ≤ kmin using the algorithm in Figure 3.2.3

(page 25). And third, use c(l) to compute c(l+1) for l ≥ kmin using the algorithm in

Figure 3.2.4 (page 26).

For the algorithm in Figure 3.2.2, notice that r(kmin−1) is equal to r(0) since kmin

is the first position where r changes value. Moreover, r(kmin) ̸= r(kmin − 1), leaving

25

one unique value for the cop at position l = kmin to avoid capturing the robber.

Figure 3.2.2: Algorithm for c(l), l = kmin with n many repeats

Compute r(0)

Compute kmin = min{k : r(k) ̸= r(0)}

Compute r(l) and r(l − 1)

Set c(l) to be the unique number
not equal to r(l) and r(l − 1)

Figure 3.2.3: Algorithm for c(l − 1), l ≤ kmin with n many repeats

Compute c(l)

Are l − 1 and l in the
same repeat block?

Set c(l − 1) = c(l) Compute r(l − 1)

Set c(l − 1) to
be the unique
value not equal

to c(l) or r(l − 1)

Yes No

After determining c(l) = c(kmin), we can use the algorithm in Figure 3.2.3 to work

backwards to determine the values from c(l − 1) to c(0). Note that we are using the

26

information about where repeat blocks are in the cop sequence in this algorithm. Up

to this point, we will have determined the first kmin values of the cop sequence.

Using the algorithm in Figure 3.2.4, we can determine the remaining values for

the cop sequence, beyond the first kmin many. Note that we again need to use the

information about where the repeat blocks are in the cop sequence. Also, note that

the set {c(l), r(l), r(l + 1)} will always consist of two values. An argument for why

this is the case was outlined on page 19 when discussing the algorithm in Figure 3.1.4.

Figure 3.2.4: Algorithm for c(l + 1), l ≥ kmin with n many repeats

Compute c(l)

Are l and l + 1 in the
same repeat block?

Set c(l + 1) = c(l) Compute r(l)
and r(l + 1)

Set c(l + 1) to be
the unique value
not in the set

{c(l), r(l), r(l + 1)}

Yes No

Theorem 3.2.1. If |{i : c(i) = c(i+1)}| = n for a cop sequence c, then for all r that

beat c, r ≡T c.

Proof. From Lemma 8, we can conclude that r ≤T c and from Lemma 9 we can

conclude that c ≤T r.

Chapter 4

Infinite Repeats in a Cop Sequence

We now consider a case of the 0-visibility game of cops and robbers on K3 where the

cop stays in place infinitely often. That is, for a cop sequence c, we consider when

the set {i : c(i) = c(i+ 1)} is infinite.

Theorem 4.0.1. There exists a cop sequence c and a robber sequence r such that r

beats c and r ≰T c and c ≰T r.

In Section 3, we proved that when the set {i : c(i) = c(i + 1)} is finite, we can

always compute c from r and r from c for every cop sequence c and robber sequence

r that beats c. However, this theorem tells us that this is not always the case when

{i : c(i) = c(i + 1)} is infinite. Moreover, because we determined r ≡T c when

{i : c(i) = c(i + 1)} finite, the fact that both r ≰T c and c ≰T r in our theorem

guarantees that we are in the infinite case.

Proof. We want to build a robber sequence r : N → {0, 1, 2} and a cop sequence

c : N → {0, 1, 2} such that r beats c and r ≰T c and c ≰T r.

27

28

Note that c ≰T r if Φr
e ̸= c for every index e and r ≰T c if Φc

e ̸= r for every index

e. Thus, we want to construct r and c so that two requirements are satisfied, namely:

Re : Φ
r
e ̸= c and Se : Φ

c
e ̸= r

Note that Φr
e ̸= c in two ways: either Φr

e(n)↓ ≠ c(n) for some n or Φr
e(n)↑ for some

n. Similarly, Φc
e ̸= r can mean either Φc

e(n)↓ ≠ r(n) for some n or Φc
e(n)↑ for some n.

We can now begin our construction of r and c which will take place in stages. Let

rs be the part of a robber sequence r and let cs be the part of a robber sequence c

determined at stage s. Then rs and cs are finite sequences consisting of 0s, 1s, and

2s that are built at the end of stage s. In particular we have that

r0 ⊆ r1 ⊆ r2 ⊆ · · · and c0 ⊆ c1 ⊆ c2 ⊆ · · ·

That is, rs and cs are getting longer at every stage in that ri and ci are initial segments

of ri+1 and ci+1, respectively. Then we can set

r =
⋃
s∈ω

rs and c =
⋃
s∈ω

cs.

We want to require that rs beats cs and also that |cs| = |rs|+1. The latter is necessary

to avoid rs being determined by cs since rs(i) cannot be equal to cs(i) or cs(i+1) for

all i if rs is to beat cs.

Let’s first look at stage 0. Here we can specifically set c0(0) = c0(1) = 0 and

r0(0) = 1. This way we will guarantee that r0 beats c0 and |c0| = |r0|+ 1 = 2. Then

at stage s, we will have the first two values of cs determined and the first value of rs

determined. Figure 4.0.1 on page 29 gives a visualization of stage s where |rs| = n

with these starting values.

For the remaining stages, we want to make sure that Re and Se are satisfied. We

can do so by making sure Se is satisfied when s = 2e + 1 and making sure Re is

satisfied when s = 2e+ 2. We will now look at the construction at stage s+ 1 in two

29

cases: (1) when s = 2e + 1 and (2) when s = 2e + 2. In particular, since we have

already constructed rs and cs so that rs beats cs and |cs| = |rs|+ 1, we now want to

define rs+1 and cs+1 so that rs+1 beats cs+1, |cs+1| = |rs+1|+1, and either Re or Se is

satisfied.

Figure 4.0.1

cs:

cs(0) cs(1)

0 0 · · · · · ·

cs(n)

rs:

rs(0)

1 · · · · · ·

rs(n− 1)

Construction at stage s+ 1 when s = 2e+ 1:

Let n = |rs|. Our goal is to extend cs to cs+1 while still satisfying Se and having

rs+1 beat cs+1 with |cs+1| = |rs+1| + 1. By making sure these are satisfied, certain

restrictions will be placed on the extension of cs.

Let’s first focus on extending cs so that it continues to lose to rs. In particular,

let’s look at how we can extend cs so that the value rs(n) has the most choices. We

want that rs(n) ̸= cs(n) and rs(n) ̸= cs(n + 1) for rs to beat cs. Thus, if we set

cs(n) = cs(n+ 1), we create only one restriction on the value for rs(n).

Let ĉs = cs
⌢ cs(n). (See Figure 4.0.2 on page 30). Now we can look at extending

ĉs to cs+1. We will need to determine the value for Φc
e(n) since we still need to make

sure Se is satisfied. In particular, we want Φc
e(n) ̸= r(n) for this value n. Hence, this

will give us another restriction on the value of rs(n).

In determining the value of Φc
e(n), we have two cases to consider. Either we can

30

extend ĉs to some sequence α so that Φα
e (n)↓. That is, at some point our program

will halt and output a value, and we can extend our sequence to that point. Or, there

is no sequence α that extends ĉs for which Φα
e (n)↓. That is, our program will never

halt and output a value. For example, it may have entered an infinite loop in the

first few values of ĉs, in which case no addition of a sequence will alter the fact that

Φα
e (n)↑ for some n. We will look at these two cases individually and define cs+1 and

rs+1 for each case.

Figure 4.0.2

cs:

cs(0) cs(1)

0 0 · · · · · ·

cs(n)

i i

ĉs

Case 1: There is a sequence α such that ĉs ⊆ α and Φα
e (n)↓.

Fix α ⊇ ĉs such that Φα
e (n)↓. Then we can set

cs+1 = α.

Notice that Φα
e (n)↓ = Φc

e(n)↓ since c =
⋃
s∈ω

cs extends cs+1 = α. Thus, Φc
e(n) is

defined in this case. Hence, we will want to make sure that Φc
e(n)↓ ≠ r(n).

First, note that because cs+1(n) = cs+1(n+1), the set {cs+1(n), cs+1(n+1),Φα
e (n)↓}

consists of at most two values. Let j ∈ {0, 1, 2} be a number not in this set. Then

we can set r̂s = rs
⌢ j.

Up to this point we have defined ĉs = cs
⌢ cs(n) and r̂s = rs

⌢ j so that r̂s beats

ĉs and |ĉs| = |r̂s|+1. Also note that cs+1 is an extension of cs. Therefore, by Lemma

1 (page 11), there exists a sequence β ⊇ r̂s such that |cs+1| = |β| + 1 and β beats

31

cs+1. Thus, by setting

rs+1 = β

we get that |cs+1| = |rs+1|+1 and rs+1 beats cs+1. See Figure 4.0.3 for a visualization.

Also notice that Se is satisfied here. In particular, because cs+1 ⊆ c and rs+1 ⊆ r

we get that Φc
e(n)↓ = Φcs+1

e (n)↓ ̸= rs+1(n) = r(n) and, consequently, Φc
e(n)↓ ̸= r(n)

for some n. Therefore, we have defined cs+1 and rs+1 so that Se is satisfied in this

case.

Figure 4.0.3

cs:

cs(0) cs(1)

0 0 · · · · · ·

cs(n)

i i

ĉs

cs+1

rs:

rs(0)

1 · · · · · ·

rs(n)

j

r̂s

rs+1

Case 2: There is no sequence α such that ĉs ⊆ α and Φα
e (n)↓.

In this case, we have that Φc
e(n)↑ for any infinite c extending ĉs. In order to define

r(n), we needed to define Φc
e(n) first, but it is not defined in this case. However,

notice that Se is still satisfied. Namely, Φc
e(n)↑ means Φc

e ̸= r. Thus, we satisfy Se

32

with no extra restriction imposed on the value for r(n). So we can simply set

cs+1 = ĉs = cs
⌢ cs(n)

and, for some j ̸= cs(n),

rs+1 = rs
⌢ j.

Then we get that |cs+1| = |rs+1| + 1 and rs+1 beats cs+1. See Figure 4.0.4 for a

visualization. Thus, we have found rs+1 and cs+1 so that Se is satisfied in this case.

Figure 4.0.4

cs:

cs(0) cs(1)

0 0 · · · · · ·

cs(n)

i i

cs+1

rs:

rs(0)

1 · · · · · ·

rs(n)

j

rs+1

In both Case 1 and Case 2, we constructed cs+1 and rs+1 so that rs+1 beats cs+1,

|cs+1| = |rs+1|+ 1, and Φc
e ̸= r. Overall, in the case where s = 2e+ 1, we determined

rs+1 and cs+1 so that Se is satisfied.

Construction at stage s+ 1 when s = 2e+ 2:

Let n = |rs|. Our goal now is to extend rs to rs+1 while satisfying Re as well

as having rs+1 beat cs+1 and |cs+1| = |rs+1| + 1. By making sure these are satisfied,

certain restrictions will now be placed on the extension of rs.

We can first focus on extending rs to that is continues to beat cs. In particular,

33

let’s look at how we can extend rs so that the value cs(n + 1) has the most choices.

We want that cs(n + 1) ̸= rs(n) and cs(n + 1) ̸= rs(n + 1) so rs beats cs. Thus, we

can set rs(n) = rs(n + 1). This way, we create only one restriction on the value for

cs(n + 1). Notice that neither rs(n) not rs(n + 1) is defined yet. The only current

restriction on these values is that they are not equal to cs(n).

Let r̂s = rs
⌢ j ⌢ j where j ̸= cs(n) (see Figure 4.0.5). Now we can look at

extending r̂s to rs+1. We will need to determine the value for Φr
e(n+1) since we need

to satisfy Re. In particular, we want Φr
e(n + 1) ̸= c(n + 1) for this value n. Hence,

this will give us another restriction on the value for cs(n+ 1).

Figure 4.0.5

rs:

rs(0)

1 · · · · · ·

rs(n)

j j

r̂s

When determining the value of Φr
e(n + 1), we have two cases to consider. Either

we can extend r̂s to some sequence β so that Φβ
e (n + 1)↓. Or, there is no sequence

β that extends r̂s for which Φβ
e (n+ 1)↓. We can look at these two cases individually

and define cs+1 and rs+1 for each.

Case 1: There is a sequence β such that r̂s ⊆ β and Φβ
e (n+ 1)↓.

Fix β ⊇ r̂s such that Φβ
e (n+ 1)↓. Then we can set

rs+1 = β.

Notice that Φβ
e (n+1)↓ = Φr

e(n+1)↓ since r =
⋃
s∈ω

rs extends rs+1 = β. Thus, Φr
e(n+1)

is defined in this case. Hence, we will want to make sure that Φr
e(n+ 1)↓ ≠ c(n+ 1).

34

First, note that the set {rs+1(n), rs+1(n+ 1),Φβ
e (n+ 1)↓} consists of at most two

values since rs+1(n) = rs+1(n+1). Let i ∈ {0, 1, 2} be a number not in this set. Then

we can set ĉs = cs
⌢ i⌢ i.

Up to this point, we have defined r̂s = rs
⌢ j ⌢ j and ĉs = cs

⌢ i⌢ i so that r̂s

beats ĉs and |ĉs| = |r̂s| + 1. Also note that rs+1 is an extension of rs. Therefore, by

Lemma 2 (page 11), there exists a sequence α ⊇ ĉs such that |α| = |rs+1|+1 and rs+1

beats α. Thus, by setting

cs+1 = α

we get that |cs+1| = |rs+1|+1 and rs+1 beats cs+1. See Figure 4.0.6 for a visualization.

Also note that Re is satisfied here. In particular, because cs+1 ⊆ c and rs+1 ⊆ r,

we get that Φr
e(n + 1)↓ = Φrs+1

e (n + 1)↓ ̸= cs+1(n + 1) = c(n + 1) and, consequently,

Φr
e(n+ 1)↓ ≠ c. Therefore, we have defined cs+1 and rs+1 so that Re is satisfied.

Figure 4.0.6

cs:

cs(0) cs(1)

0 0 · · · · · ·

cs(n)

i i

ĉs

cs+1

rs:

rs(0)

1 · · · · · ·

rs(n)

j j

r̂s

rs+1

35

Case 2: There is no sequence β such that r̂s ⊆ β and Φβ
e (n+ 1)↓.

In this case, we have that Φr
e(n + 1)↑ for any infinite r extending r̂s. In order to

define cs(n+1), we needed to define Φr
e(n+1) first, but it is not defined in this case.

However, Re is still satisfied since Φr
e(n + 1)↑ means that Φr

e ̸= c. Thus, we satisfy

Re with no extra restriction imposed on the value of c(n+ 1). So we can set

rs+1 = r̂s = rs
⌢ j ⌢ j

for some j ̸= cs(n) and set

cs+1 = cs
⌢ i⌢ i

for some i ̸= rs(n). Then we get that |cs+1| = |rs+1| + 1 and rs+1 beats cs+1. See

Figure 4.0.7 for the picture. Thus, we have found rs+1 and cs+1 so that Re is satisfied.

Figure 4.0.7

cs:

cs(0) cs(1)

0 0 · · · · · ·

cs(n)

i i

ĉs

rs:

rs(0)

1 · · · · · ·

rs(n)

j j

r̂s

In both Case 1 and 2, we constructed cs+1 and rs+1 so that rs+1 beats cs+1,

|cs+1| = |rs+1| + 1, and Φr
e ̸= c. Overall, when s = 2e + 2, we determined rs+1 and

cs+1 so that Re is satisfied.

36

With the result from Theorem 4.0.1 in mind, we might hope to also get the result

that for all cop sequences c such that the set {i : c(i) = c(i + 1)} is infinite, there

exists a robber sequence r such that r beats c and c ≰T r. However, as we will see

with our next result, this is not always the case.

Theorem 4.0.2. There is a noncomputable cop sequence c such that the set

{i : c(i) = c(i+ 1)} is infinite and c ≤T r for all robber sequences r that beat c.

Proof. We want to construct a cop sequence c so that three conditions are satisfied.

1. c is noncomputable

2. {i : c(i) = c(i+ 1)} is infinite

3. c ≤T r for all r that beat c

We can build such a cop sequence in blocks of three, defining c(3e), c(3e + 1), and

c(3e + 2) for all indexes e. In particular, at c(3e) we will try to satisfy condition 1,

at c(3e + 1) we will try to satisfy condition 2, and at c(3e + 2) we will try to satisfy

condition 3.

Figure 4.0.8: Constructing c in blocks of three

· · · · · · · · ·c(3e) c(3e+1) c(3e+2)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
First, in order to guarantee condition 1, we want to satisfy

Re : c ̸= Φe.

The idea here is to pick an n to use for Re. Then if Φe(n)↓, we can define c(n) so

that c(n) ̸= Φe(n)↓. If, on the other hand, Φe(n)↑, then Re is immediately satisfied

37

with no restriction on c(n). In general, for every index e, we can define

c(3e) =

0 if Φe(3e)↓ > 0 or Φe(3e)↑

1 if Φe(3e)↓ = 0

.

With this we satisfy Re : c ̸= Φe since either Φe(3e)↑ or Φe(3e)↓ ̸= c(3e). And so we

have defined c(3e) for all e so that c is noncomputable.

Next, we wish to satisfy condition 2 by making sure the set {i : c(i) = c(i + 1)}

is infinite. By repeating a value in each of the blocks of three, this will guarantee a

value will be repeated in c infinitely often. In particular, we can set c(3e+1) = c(3e).

Note that this means c(3e+1) = c(3e) = 0 or c(3e+1) = c(3e) = 1 based on how we

defined c(3e). Thus, we have defined c(3e + 1) so that c has infinitely many values

that repeat.

Lastly, we want to satisfy condition 3 by filling in c(3e + 2) so that c ≤T r for

all r that beat c. That is, we need that an r that beats c can recover the values

of c(3e) = c(3e + 1) and c(3e + 2). The value of c(3e + 2) can be assigned in an

algorithmic way so that from r(3e + 1), we can recover the values of c(3e + 1) and

c(3e+ 2).

To see how to do this, assume that r beats c. Then r(3e + 1) ̸= c(3e + 1) and

r(3e+ 1) ̸= c(3e+ 2). Note that c(3e+ 1) = c(3e) = 0 or c(3e+ 1) = c(3e) = 1. We

will look at how to define r(3e+1) in each of these cases. That is, we want to assign

a value to c(3e + 2) so that r(3e + 1) is determined. First, if c(3e + 1) = c(3e) = 0,

then we can set c(3e + 2) = 1. This will guarantee that r(3e + 1) = 2. Second,

if c(3e + 1) = c(3e) = 1, then we can set c(3e + 2) = 2. This will guarantee that

r(3e+ 1) = 0. In general, we can set c(3e+ 2) = c(3e+ 1) + 1.

If we wanted to determine c from r, then we can look at these two cases. For

38

example, say we wanted to determine c(10) given r. First note that 10 ≡ 1 mod 3.

That is, 10 is the (3e + 1)-spot for e = 3. So given a value for c(3e + 1), we need to

look at r(3e+1), in this case r(10). If r(10) = 2, then we know c(10) = 0 (and hence

c(9) = 0 and c(11) = 1). If r(10) = 0, then we know c(10) = 1 (and hence c(9) = 1

and c(11) = 2). In general, to determine the value of c(n) from r, we can use the

algorithm in Figure 4.0.9. Hence, c ≤T r for all r that beat c.

Figure 4.0.9

Find e such that n = 3e
or 3e + 1 or 3e + 2

Determine the
value of r(3e + 1)

Set c(3e) = c(3e+ 1) = 0
and c(3e + 2) = 2

Set c(3e) = c(3e+ 1) = 1
and c(3e + 2) = 2

If r(3e+ 1) = 0 If r(3e+ 1) = 2

Altogether, we have constructed c by defining c(3e), c(3e + 1), and c(3e + 2) for

all indexes e so that c is noncomputable, the set {i : c(i) = c(i + 1)} is infinite, and

c ≤T r for all r that beat c.

Bibliography

[1] Anthony Bonato, An invitation to pursuit-invasion games and graph theory, Stu-

dent Mathematical Library, vol. 97, American Mathematical Society, 2020.

[2] Anthony Bonato and Richard J. Nowakowski, The game of cops and robbers on

graphs, Student Mathematical Library, vol. 61, American Mathematical Society,

2010.

[3] Robert I. Soare, Turing computability: Theory and applications, Springer, 2016.

39

